“The overall goal of this project is to inform how we’re making holistic forest-management decisions, considering all facets of the forest system,” Murphy-Williams said. “Sometimes things like wildlife diversity and distribution are just assumed, rather than actually measured. The great benefit of working at the Ellsworth Preserve is that we can test assumptions on the ground.”
The Experiment
The camera locations were randomly selected in four of the eight experimental watershed basins of the preserve. Each basin is categorized based on the forest restoration method in use: control, passive restoration and active restoration. Control sites receive no restoration intervention, passive restoration sites have their roads removed, and active restoration sites receive tree thinning and additional planting of native plant species. The goal within active restoration sites is to accelerate the restoration of previously logged industrial timberland to old-growth characteristics, which can lead to thriving fish, wildlife and clean water.
The data were gathered through motion-activated cameras that would take a burst of images if movement was detected. Getting the proper camera angle was essential to minimize false motion detection from foliage moving in the wind. Murphy-Williams found that the easiest way to accomplish this positioning is to get resourceful. She placed sticks behind the cameras to angle them upwards or downwards before attaching them firmly to the tree.